miércoles, 18 de febrero de 2009

Sistema Internacional

El Sistema Internacional de Unidades (abreviado SI del francés: Le Système International d'Unités), también denominado Sistema Internacional de Medidas, es el nombre que recibe el sistema de unidades que se usa en la mayoría de los países y es la forma actual del sistema métrico decimal. El SI también es conocido como «sistema métrico», especialmente en las naciones en las que aún no se ha implantado para su uso cotidiano. Fue creado en 1960 por la Conferencia General de Pesos y Medidas, que inicialmente definió seis unidades físicas básicas. En 1971 se añadió la séptima unidad básica, el mol.

Unidades:

Magnitud física básica Símbolo de la Magnitud Unidad básica Símbolo de la Unidad Observaciones
Longitud L metro m Se define en función de la velocidad de la luz
Tiempo T segundo s Se define en función del tiempo atómico
Masa M kilogramo kg Es la masa del «cilindro patrón» custodiado en Sevres (Francia).
Intensidad de corriente eléctrica I amperio o ampere A Se define a partir de la fuerza magnética
Temperatura Θ kelvin K Se define a partir de la temperatura termodinámica del punto triple del agua.
Cantidad de sustancia N mol mol Véase también número de Avogadro
Intensidad luminosa Iv candela cd Véase también conceptos relacionados: lumen, lux e iluminación física

Modelo Matematico


En ciencias aplicadas un Modelo matemático es uno de los tipos de modelos científicos, que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables y/o entidades u operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad.

El significado de Modelo matemático en matemáticas, sin embargo, es algo diferente. En concreto en matemáticas se trabajan con modelos formales. Un modelo formal para una cierta teoría matemática es un conjunto sobre el que se han definido un conjunto de relaciones unarias, binarias y trinarias, que satisface las proposiciones derivadas del conjunto de axiomas de la teoría. La rama de la matemática que se encarga de estudiar sistemáticamente las propiedades de los modelos es la teoría de modelos.

Conductancia

Se denomina Conductancia eléctrica (G) de un conductor a la inversa de la oposición que dicho conductor presenta al movimiento de los electrones en su seno, esto es, a la inversa de su resistencia eléctrica (R), por lo que:

 G= {1 \over R}

donde:

G = Conductancia en Siemens
R = Resistencia en Ohmios

La unidad de medida de la conductancia en el Sistema internacional de unidades es el Siemens.
Este parámetro es especialmente útil a la hora de tener que manejar valores de resistencia muy pequeños.

Resistencia

Se denomina resistencia eléctrica, R, de una sustancia, a la oposición que encuentra la corriente eléctrica para circular a través de dicha sustancia. Su valor viene dado en ohmios, se designa con la letra griega omega mayúscula, Ω, y se mide con el ohmímetro.

Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.

Resistividad

Todas las sustancias se oponen en mayor o menor grado al paso de la corriente electrica, esta oposicion es a la que llamamos resistencia electrica. A los materiales buenos conductores de la electricidad tienen una resistencia electrica muy baja, los aisladores tienen una resistencia muy alta. Se le llama resistividad al grado de dificultad que encuentran los electrones en sus desplazamientos. Se designa por la letra griega rho minúscula (ρ) y se mide en ohms por metro (Ω·m, a veces también en Ω·mm²/m).

Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.


Tabla resistividad materiales

















Tabla conductividad materiales

Conductividad

La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.
La conductividad es la inversa de la resistividad, por tanto  \sigma = {1 \over \rho}, y su unidad es el S/m (siemens por metro).

Neutron



Buscar: en AstroMía en Internet

Neutrón

Es una partícula fundamental sin carga eléctrica que, junto con los protones, representa un componente fundamental de los núcleos del Atomo. Tiene una masa de apenas 1,675 x 1 o-Z4 gramos/ muy poco superior a la del Protón.

En el interior del núcleo permanece en una configuración estable; aislado, el neutrón es inestable y después de aproximadamente diez minutos decae (es decir se transforma) en un protón y en un electrón.

Proton


El protón es una de las partículas subatómicas más importantes. Los protones se combinan con los electrones y (generalmente) con los neutrones para formar átomos.

Los protones son practicamente del mismo tamanño que los neutrones, y ambos son mucho más grandes que los electrones. Un protón tiene una masa aproximadamente 1.836 veces mayor que la masa del electrón, pero las masas de los protones y neutrones se diferencian menos de uno por ciento. Un protón tiene una masa de 1.6726 x 10-24gramos.

Los protones tienen una carga eléctrica positiva, conocida a veces como carga elemental, carga fundamental o carga de +1. Los electrones tienen una carga del mismo valor pero de polaridad opuesta, -1. La carga fundamental tiene un valor de 1.602 x 10-19 coulombios.


Electrones


Los electrones son uno de los tipos más importantes de partículas subatómicas. Los electrones se combinan con protones y (generalmente) con neutrones para crear átomos.

Los electrones son mucho más pequeños que los neutrones y protones. La masa de un simple neutrón o protón es más de 1 800 veces mayor que la masa de un electrón. El tiene tiene una masa de 9.11 x 10-28 gramos.

Los electrones tienen una carga eléctrica negativa, con una magnitud llamada algunas veces carga elemental o carga fundamental. Por esto se dice que un electrón tiene una carga de -1.


martes, 17 de febrero de 2009

Átomos


En química y física, átomo (del latín atomus, y éste del griego άτομος, indivisible) es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades y que no es posible dividir mediante procesos químicos.

El átomo a su vez esta compuesto por otras particulas subatomicas como lo son:

Moléculas


En química, una molécula es una partícula formada por un conjunto de átomos ligados por enlaces covalentes o metálicos (en el caso del enlace iónico no se consideran moléculas, sino redes cristalinas), de forma que permanecen unidos el tiempo suficiente como para completar un número considerable de vibraciones moleculares. Constituye la mínima cantidad de una sustancia o compuesto que mantiene todas sus propiedades químicas.

Estructura de la materia


La materia consiste de partículas extremadamente pequeñas agrupadas juntas para formar el átomo. Hay 92 ocurrencias naturales de estas agrupaciones de partículas llamadas elementos. Estos elementos fueron agrupados en la tabla periódica de los elementos en secuencia de acuerdo a sus números atómicos y peso atómico. Hay además 14 elementos hechos por el hombre que no ocurren en la naturaleza, por lo que al final son unos 106 elementos conocidos hasta la fecha. Estos elementos no pueden cambiarse por procesos químicos.

Los elementos pueden encontrarse en estado liquido, solido, gaseoso o plasma, todos los elementos y compuestos se subdividen en particulas:


Moléculas

Átomos

domingo, 8 de febrero de 2009

Aislantes o dieléctricos




Se denimina Dielectricos a los materiales que no conducen la
electricidad, por lo que pueden ser utilizados como aislantes eléctricos. Algunos ejemplos de este tipo de materiales son el vidrio, la cerámica, la goma, la mica, la cera, el papel, la madera seca, la porcelana, algunas grasas para uso industrial y electrónico y la baquelita. Los dieléctricos se utilizan en la fabricación de condensadores, para que las cargas reaccionen. Cada material dieléctrico posee una constante dieléctrica k.

Los aislantes (o dieléctricos), en los que la diferencia existente entre las bandas de energía, del orden de 6 eV impide, en condiciones normales el salto de los electrones.

Conductores Eléctricos


Conductor eléctrico

Un conductor eléctrico es aquel cuerpo que puesto en contacto con un cuerpo cargado de electricidad transmite ésta a todos los puntos de su superficie. Generalmente elementos, aleaciones o compuestos con electrones libres que permiten el movimiento de cargas.

Hay sustancias que tienen más electrones en la Banda de Conducción que otras, o que en un mismo material, cuando las condiciones exteriores cambian, se comporta de diferente manera. Cada capa electrónica puede tener un número determinado de electrones. En el caso de la última capa, que es la que origina la valencia o conducción, este número es de ocho, y todos los átomos tienden a completar su última capa con ocho electrones (regla del octete).

Para que la conducción de la electricidad sea posible es necesario que haya electrones que no estén ligados a un enlace determinado (banda de valencia), sino que sean capaces de desplazarse por el cristal (banda de conducción). La separación entre la banda de valencia y la de conducción se llama banda prohibida, porque en ella no puede haber portadores de corriente.

Semiconductor tipo P


Semiconductor tipo P

Un Semiconductor tipo P se obtiene llevando a cabo un proceso de dopado, añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de carga libres (en este caso positivos o huecos).

Cuando el material dopante es añadido, éste libera los electrones más débilmente vinculados de los átomos del semiconductor. Este agente dopante es también conocido como material aceptor y los átomos del semiconductor que han perdido un electrón son conocidos como huecos.

-Los diamantes son semiconductores tipo P naturales-

Semiconductor tipo N


Un Semiconductor tipo N se obtiene llevando a cabo un proceso de dopado añadiendo un cierto tipo de átomos al semiconductor para poder aumentar el número de portadores de electrones libres.

Cuando el material dopante es añadido, éste aporta sus electrones más débilmente vinculados a los átomos del semiconductor. Este tipo de agente dopante es también conocido como material donante ya que da algunos de sus electrones.

Semiconductor Extrínseco


Si a un semiconductor intrínseco, se le añade un pequeño porcentaje de impurezas, es decir, elementos trivalentes o pentavalentes, el semiconductor se denomina extrínseco, y se dice que está dopado. Evidentemente, las impurezas deberán formar parte de la estructura cristalina sustituyendo al correspondiente átomo de silicio.

Semiconductor intrínseco


Es un semiconductor puro. A temperatura ambiente se comporta como un aislante porque solo tiene unos pocos electrones libres y huecos debidos a la energía térmica.

En un semiconductor intrínseco también hay flujos de electrones y huecos, aunque la corriente total resultante sea cero. Esto se debe a que por acción de la energía térmica se producen los electrones libres y los huecos por pares, por lo tanto hay tantos electrones libres como huecos con lo que la corriente total es cero.

Semiconductores

Un semiconductor es una sustancia que se comporta como conductor o como aislante dependiendo de la temperatura del ambiente en el que se encuentre.

Los semiconductores, en los que el salto de energía es pequeño, pueden conducir la electricidad; pero además, su conductividad puede regularse, puesto que bastará disminuir la energía aportada para que sea menor el número de electrones que salte a la banda de conducción.

Los semiconductores se pueden clasificar de este modo:


Algunos semiconductores y su configuración electrónica:

sábado, 7 de febrero de 2009

Materiales Superconductores

Superconductores



Se denomina superconductividad a la capacidad intrínseca que poseen ciertos materiales para conducir corriente elécrica con resistencia y pérdida de energía nulas en determinadas condiciones.

Para que se den las condiciones apropiadas en las que un material presenta superconductividad, se debe enfriar el material a casi cero absoluto ( aprox -250Cº), al enfriar el material, su resistencia se reduce a cero, convirtiendose en un superconductor.

La superconductividad ocurre en una gran variedad de materiales, incluyendo elementos simples como el estaño y el aluminio, diversas aleaciones metálicas y algunos semiconductores fuertemente dopados. La superconductividad no ocurre en metals nobles como el oro, la plata, y el platino, ni en la mayoría de los metales ferromagnéticos como el hierro.






Materiales Electricos

Tipos de materiales eléctricos

-Daniel Mauricio Rosas-
-Rodolfo José Reyes-.

Los materiales electricos pueden ser clasificados segun su propiedad para conducir la corriente, la cual depende de el numero de electrones en el ultimo nivel de sus atomos, y de lo ligados que esten. Pueden ser clasificados de la siguiente manera: